[hal-00289384, v1] Well-posedness of the spatially homogeneous Landau equation for soft potentials

نویسندگان

  • NICOLAS FOURNIER
  • HÉLÈNE GUÉRIN
چکیده

Abstract. We consider the spatially homogeneous Landau equation of kinetic theory, and provide a differential inequality for the Wasserstein distance with quadratic cost between two solutions. We deduce some well-posedness results. The main difficulty is that this equation presents a singularity for small relative velocities. Our uniqueness result is the first one in the important case of soft potentials. Furthermore, it is almost optimal for a class of moderately soft potentials, that is for a moderate singularity. Indeed, in such a case, our result applies for initial conditions with finite mass, energy, and entropy. For the other moderatley soft potentials, we assume additionnally some moment conditions on the initial data. For very soft potentials, we obtain only a local (in time) well-posedness result, under some integrability conditions. Our proof is probabilistic, and uses a stochastic version of the Landau equation, in the spirit of Tanaka [14].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of the Spatially Homogeneous Landau Equation for Soft Potentials

Abstract. We consider the spatially homogeneous Landau equation of kinetic theory, and provide a differential inequality for the Wasserstein distance with quadratic cost between two solutions. We deduce some well-posedness results. The main difficulty is that this equation presents a singularity for small relative velocities. Our uniqueness result is the first one in the important case of soft ...

متن کامل

On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity

Abstract. We prove an inequality on the Kantorovich-Rubinstein distance – which can be seen as a particular case of a Wasserstein metric– between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, but with a moderate angular singularity. Our method is in the spirit of [7]. We deduce some well-posedness and stability results in the physically relevant cases of ...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

[hal-00793662, v1] Rate of convergence of the Nanbu particle system for hard potentials

We consider the (numerically motivated) Nanbu stochastic particle system associated to the spatially homogeneous Boltzmann equation for true hard potentials. We establish a rate of propagation of chaos of the particle system to the unique solution of the Boltzmann equation. More precisely, we estimate the expectation of the squared Wasserstein distance with quadratic cost between the empirical ...

متن کامل

Particle Approximation of Some Landau Equations

Abstract. We consider a class of nonlinear partial-differential equations, including the spatially homogeneous Fokker-Planck-Landau equation for Maxwell (or pseudo-Maxwell) molecules. Continuing the work of [6, 7, 4], we propose a probabilistic interpretation of such a P.D.E. in terms of a nonlinear stochastic differential equation driven by a standard Brownian motion. We derive a numerical sch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010